翻訳と辞書
Words near each other
・ Fundin (lake)
・ Funding
・ Funding Act of 1790
・ Funding Act of 1870
・ Funding bias
・ Funding Circle
・ Funding Council
・ Funding Evil
・ Fundamental Epistle
・ Fundamental frequency
・ Fundamental Fysiks Group
・ Fundamental group
・ Fundamental group scheme
・ Fundamental human needs
・ Fundamental increment lemma
Fundamental interaction
・ Fundamental interpersonal relations orientation
・ Fundamental justice
・ Fundamental law
・ Fundamental Law of Education
・ Fundamental Law of Vatican City State
・ Fundamental Laws of England
・ Fundamental Laws of the Realm
・ Fundamental lemma (Langlands program)
・ Fundamental lemma of calculus of variations
・ Fundamental lemma of sieve theory
・ Fundamental Love
・ Fundamental matrix
・ Fundamental matrix (computer vision)
・ Fundamental matrix (linear differential equation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fundamental interaction : ウィキペディア英語版
Fundamental interaction

Fundamental interactions, also known as fundamental forces, are the interactions in physical systems that do not appear to be reducible to more basic interactions. There are four conventionally accepted fundamental interactions—gravitational, electromagnetic, strong nuclear, and weak nuclear. Each one is understood as the dynamics of a ''field''. The gravitational force is modelled as a continuous classical field. The other three are each modelled as discrete quantum fields, and exhibit a measurable unit or ''elementary particle''.
The two nuclear interactions produce strong forces at minuscule, subatomic distances. The strong nuclear interaction is responsible for the binding of atomic nuclei. The weak nuclear interaction also acts on the nucleus, mediating radioactive decay. Electromagnetism and gravity produce significant forces at macroscopic scales where the effects can be seen directly in every day life. Electrical and magnetic fields tend to cancel each other out when large collections of objects are considered, so over the largest distances (on the scale of planets and galaxies), gravity tends to be the dominant force.
Theoretical physicists working beyond the Standard Model seek to quantize the gravitational field toward predictions that particle physicists can experimentally confirm, thus yielding acceptance to a theory of quantum gravity (QG) (Phenomena suitable to model as a fifth force—perhaps an added gravitational effect—remain widely disputed.) Other theorists seek to unite the electroweak and strong fields within a Grand Unified Theory (GUT). While all four fundamental interactions are widely thought to align on a highly minuscule scale, particle accelerators cannot produce the massive energy levels required to experimentally probe at that Planck scale (which would experimentally confirm such theories.) Yet some theories, such as the string theory, seek both QG and GUT within one framework, unifying all four fundamental interactions along with mass generation within a theory of everything (ToE).
==General relativity==

In his 1687 theory, Isaac Newton postulated space as an infinite and unalterable physical structure existing before, within, and around all objects while their states and relations unfold at a constant pace everywhere, thus absolute space and time. Inferring that all objects bearing mass approach at a constant rate, but collide by impact proportional to their masses, Newton inferred that matter exhibits an attractive force. His law of universal gravitation mathematically stated it to span the entire universe instantly (despite absolute time), or, if not actually a force, to be instant interaction among all objects (despite absolute space.) As conventionally interpreted, Newton's theory of motion modelled a ''central force'' without a communicating medium.〔Newton's absolute space was a medium, but not one transmitting gravitation.〕 Thus Newton's theory violated the first principle of mechanical philosophy, as stated by Descartes, ''No action at a distance''. Conversely, during the 1820s, when explaining magnetism, Michael Faraday inferred a ''field'' filling space and transmitting that force. Faraday conjectured that ultimately, all forces unified into one.
In the early 1870s, James Clerk Maxwell unified electricity and magnetism as effects of an electromagnetic field whose third consequence was light, travelling at constant speed in a vacuum. The electromagnetic field theory contradicted predictions of Newton's theory of motion, unless physical states of the luminiferous aether—presumed to fill all space whether within matter or in a vacuum and to manifest the electromagnetic field—aligned all phenomena and thereby held valid the Newtonian principle relativity or invariance. Disfavouring hypotheses at unobservables, Albert Einstein discarded the aether, and aligned electrodynamics with relativity by denying absolute space and time, and stating relative space and time. The two phenomena altered in the vicinity of an object measured to be in motion—length contraction and time dilation for the object experienced to be in relative motion—Einstein's principle special relativity, published in 1905.
Special relativity was accepted as a theory too. It rendered Newton's theory of motion apparently untenable, especially since Newtonian physics postulated an object's mass to be constant. A consequence of special relativity is mass being a variant form of energy, condensed into an object. By the equivalence principle, published by Einstein in 1907, gravitation is indistinguishable from acceleration, perhaps two phenomena sharing a mechanism. That year, Hermann Minkowski modelled special relativity to a unification of space and time, 4D spacetime. Stretching the three spatial dimensions onto the single dimension of time's arrow, Einstein arrived at the general theory of relativity in 1915.〔Special relativity holds for objects at vast speed but of negligible mass, for instance elementary particles. Yet by yielding gravitation, which is a manner of acceleration, notable mass breaks inertia—that is, constant speed and direction—and thereby violates special relativity. Special relativity could approximately predict a massive object's motion during barely an instant, however, and thus is a temporally limited case of general relativity.〕 Einstein interpreted space as a substance, ''Einstein-aether'', whose physical properties receive motion from an object and transmit it to other objects while modulating events unfolding. Equivalent to energy, mass contracts space, which dilates time—events unfold more slowly—establishing local tension. The object relieves it in the likeness of a free fall at light speed along the pathway of least resistance, a straight line's equivalent on the curved surface of 4D spacetime, a pathway termed ''worldline''.
Einstein abolished ''action at a distance'' by theorizing a gravitational field—4D spacetime—that waves while transmitting motion across the universe at light speed. All objects always travel at light speed in 4D spacetime. At zero relative speed, an object is observed to travel none through space, but age most rapidly. That is, an object at relative rest in 3D space exhibits its constant energy to an observer by exhibiting top speed along 1D time flow. Conversely, at highest relative speed, an object traverses 3D space at light speed, yet is ageless, none of its constant energy available to internal motion as flow along 1D time. Whereas Newtonian inertia is an idealized case of an object either keeping rest or holding constant velocity by its hypothetical existence in a universe otherwise devoid of matter, Einsteinian inertia is indistinguishable from an object experiencing no acceleration by existing in a gravitational field possibly full of matter distributed uniformly. Conversely, even massless energy manifests gravitation—which is acceleration—on local objects by "curving" the surface of 4D spacetime. Physicists renounced belief that motion must be mediated by a ''force''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fundamental interaction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.